SDLS116 - DECEMBER 1983 - REVISED MARCH 1988

- Package Options Include Plastic and Ceramic DIPs and Ceramic Flat Packages
- Dependable Texas Instruments Quality and Reliability

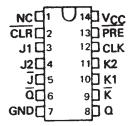
description

These monolithic, edge-triggered J-K flip-flops feature gated inputs, direct clear and preset inputs, and complementary Q and \overline{Q} outputs. Input information is transferred to the outputs on the positive edge of the clock pulse.

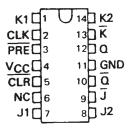
Direct-coupled clock triggering occurs at a specific voltage level of the clock pulse, and after the clock input threshold voltage has been passed, the gated inputs are locked out.

These flip-flops are ideally suited for medium-to-highspeed applications and can result in a significant saving in system power dissipation and package count where input gating is required.

The SN5470 is characterized for operation over the full military temperature range of -55°C to 125°C . The SN7470 is characterized for operation from 0°C to 70°C .

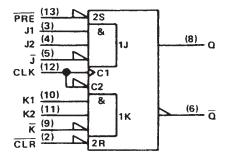

FUNCTION TABLE

Ĺ	IN	OUT	PUTS			
PRE	CLR	CLK	J K		a	ā
L	Н	L	X	X	Н	L
Н	L	L	X	×	L	н
L	L	×	X	X	L†	LT
Н	Н	†	L	L	Φ0	σ_0
Н	н	Ť	Н	L	н	L
Н	Н	†	L	Н	L	н
Н	Н	t	Н	Н	TOGGLE	
Н	Н	L	X	X	σ^0	σ₀


If inputs J and K are not used, they must be grounded. Preset or clear function can occur only when the clock input is low.

†This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

SN5470 . . . J PACKAGE SN7470 . . . N PACKAGE (TOP VIEW)



SN5470 ... W PACKAGE (TOP VIEW)

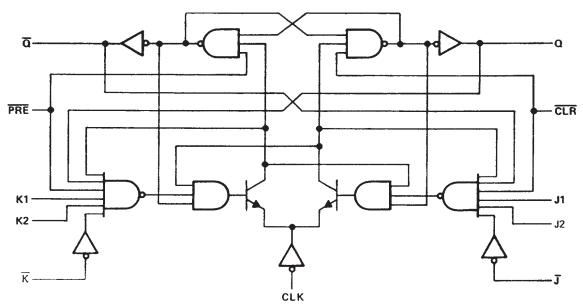
NC - No internal connection

logic symbol†

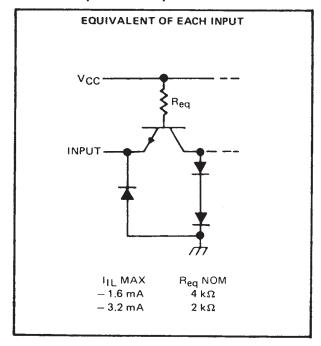
[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

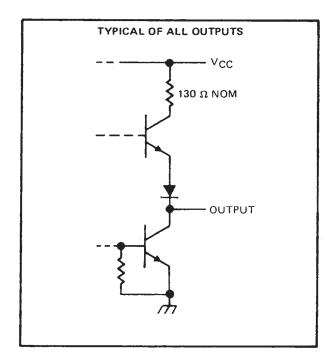
Pin numbers shown are for J and N packages only.

positive logic


$$J = J1 \cdot J2 \cdot \overline{J}$$

$$K = K1 \cdot K2 \cdot \overline{K}$$


SDLS116 - DECEMBER 1983 - REVISED MARCH 1988


logic diagram (positive logic)

70-GATED J-K WITH CLEAR AND PRESET

schematics of input and outputs

SN5470, SN7470 AND-GATED J-K POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR

SDLS116 - DECEMBER 1983 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	
Input voltage	
Operating free-air temperature: SN5470	– 55°C to 125°C
SN7470	0°C to 70°C
Storage temperature range	– 65°C to 150°C

NOTE 1: All voltage values are with respect to network ground terminal.

recommended operating conditions

			SN5470			SN7470			
			MIN	NOM	MAX	MIN	NOM MAX		UNIT
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	V
v_{iH}	High-level input voltage		2			2			V
VIL	Low-level input voltage				8.0			8.0	V
ЮН	High-level output current				- 0.4			- 0.4	mA
IOL	Low-level output current				16			16	mA
		CLK high	20			20			
t_W	Pulse duration	CLK low	30			30			ns
		PRE or CLR low	25			25			
t _{su}	Setup time before CLK †		20			20			ns
th	Hold time-Data after CLK†		5			5			ns
T_A	Operating free-air temperature		– 55		125	0	-	70	°C

^{†‡}The arrow indicates the edge of the clock pulse used for reference: †for the rising edge, ‡ for the falling edge.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS†		SN5470			SN7470			T
				MIN	TYP [‡]	MAX	MIN	TYP‡	MAX	UNIT
ViK		V _{CC} = MIN,	I _I = - 12 mA			- 1.5			- 1.5	V
Vон		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{1H} = 2 V, I _{OH} = -0.4 mA	2.4	3.4		2.4	3.4		٧
VOL		V _{CC} = MIN, V _{1L} = 0.8 V,	V _{IH} = 2 V, I _{OL} = 16 mA		0.2	0.4		0.2	0.4	V
I ₄		V _{CC} = MAX,	V ₁ = 5.5 V			1			1	mA
	PRE or CLR		V 24V			80			80	μА
ЧН	All other	V _{CC} = MAX,	V ₁ = 2.4 V						40) "^
PA	PRE or CLR¶					- 3.2			-3.2	
IL	All other	$V_{CC} = MAX$, $V_{\uparrow} = 0.4 \text{ V}$		- 1.6 - 1			- 1.6	m A		
loss		V _{CC} = MAX		- 20		- 57	- 18		- 57	mA
Icc		V _{CC} = MAX,	See Note 2		13	26		13	26	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 $^{^{\}ddagger}$ All typical values are at V_{CC} = 5 V, T_A = 25 °C.

[§]Not more than one output should be shorted at a time.

¹Clear is tested with preset high and preset is tested with clear high.

NOTE 2: With all outputs open, ICC is measured with the Q and Q outputs high in turn. At the time of measurement, the clock input is at 4.5 V.

SN5470, SN7470 AND-GATED J-K POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR

SDLS116 - DECEMBER 1983 - REVISED MARCH 1988

switching characteristics, VCC = 5 V, TA = 25°C (see note 3)

PARAMETER†	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
f _{max}				20	35		MHz
tPLH	PRE or CLR	Q or Q				50	ns
t _{PHL}			$R_L = 400 \Omega$, $C_L = 15 pF$			50	ns
tPLH	CLK	Q or Q			27	50	ns
tPHL					18	50	ns

 $^{^\}dagger f_{max}$ = maximum clock frequency; tpLH = propagation delay time, low-to-high level output; tpHL = propagation delay time, high-to-low level output. NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

